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EVENTS AND RULES FOR JAVA: DESIGN AND 
IMPLEMENTATION OF A SEAMLESS APPROACH 

Abstract 

During the last decade, the paradigm of object-oriented software 
development has become one of the central means of developing software 
systems. In the object-oriented paradigm, applications are modeled as a 
set of interacting objects that require and provide services. This 
approach assumes that each object knows where the service is and calls 
it directly. However, this call-driven approach is not the only manner 
to invoke behavior. The proponents of active systems have proposed 
event-condition-action (ECA) rules, a mechanism where behavior is 
invoked automatically as a response to events but without user or 
application intervention. An active system automatically monitors 
events, evaluates conditions defined over the state of the system when 
the events occur, and invokes the action associated with the event- 
condition pair based on the result of condition evaluation. Making a 
passive system active requires an expressive event specification 
language with well-defined semantics, algorithms for detecting the 
events, designing an event detector and implementing it. The 
environment (the programming language and the operating system) in 
which a system is built influences how the event detector is designed 
and implemented. 

Sentinel, developed at University of Florida, provides active 
capability to Open OODB, an object-oriented database management system 
(OODBMS) that was implemented in C++. However, C++ environment had 
certain limitations that proved deterrent to implementing some of the 
features of active capability. We tried to overcome these limitations 
by redesigning the active subsystem in Java, the most popular language 
now. Although both C++ and Java are both object-oriented languages, 
they differ in some of the capabilities they offer such as support for 
system calls, obtaining information of the application objects during 
run-time etc. 

This report discusses the re-designing and implementation of the active 
subsystem in the Java environment. There are three motivations behind 
our objective of re-designing and implementing the active subsystem in 
the Java environment. First, we would like to overcome some of the 
limitations of the C++ environment in providing active capability to 
passive systems. Second, we would like to exploit some of the 
capabilities provided by the Java environment that would be very much 
applicable and useful for an active system. Finally, we feel there is a 
need for active capability in the Java environment, as more and more 
OODBMSs (Poet, ObjectStore etc.) and Distributed Systems (OrbixWeb) are 
being developed in Java. 

IV 



1.   INTRODUCTION 

During the last decade, many software systems have been built using the object- 
oriented paradigm. In these systems, applications are modeled as a set of interacting 
objects that require and provide services. These systems are mostly passive since any 
situation to be monitored in the system has to be done explicitly by the user or the 
application by polling the system at certain intervals. For example, in a hospital 
environment if the electrocardiogram readings are recorded in the system for an intensive 
care unit patient, it is the responsibility of the doctor or nurse to check for the change of 
values over a period of time to determine any state of emergency. On the other hand, an 
active system can continuously monitor situations to initiate appropriate actions in 
response to updates, occurrence of particular states or transition of states automatically, 
possibly subject to timing constraints. An active system consists of event-condition- 
action or ECA rules that are used to invoke actions as a response to events occurring in 
the application without user or application intervention. 

Situation monitoring can be done by defining ECA rules on those events that are 
of interest in the system. An event is defined as an instantaneous and atomic (happens 
completely or not at all) point of occurrence within an application. An ECA rule consists 
of three components - an event, a condition, and an action. According to the ECA rule 
semantics [1], whenever an event occurs, a condition is checked and the action is carried 
out if the condition evaluates to true. The behavior exhibited by applications by means of 
ECA rules, i.e., an action being carried out as a consequence of a certain event is known 
as active behavior. Programming languages, database systems and graphical user 
interfaces are being enhanced to provide explicit support for active behavior due to the 
large range of applications that naturally express their semantics using this paradigm. 
Active behavior is also useful to those applications that require monitoring situations and 
reacting to them without user or application intervention. Initially, active capability was 
incorporated into relational DBMSs by means of triggers. With the advent of OODBMSs, 
there was a need for extending the active capability from the relational domain to the 
object-oriented domain to support both OODBMSs and object-oriented applications. 

Broadly, events in a system can be classified into two types - internal events and 
external events. Internal events are detected by the system/application whereas external 
events occur and are detected outside the system but are relevant to the 
system/application under consideration. Typical external events include the user, the 
operating system, or the user-interface part of the application (when the system of interest 
is the non-user-interface part of the application). The user can be interested in 
undertaking an action linked to a certain event or a set of events, such as showing a new 
window when the mouse is moved over a certain rectangle of the display, or updating the 
valid domain of x wheny is changed and both are related in some way. 

The process of incorporating active behavior entails the following steps: (1) 
defining the event and the rules associated with the event; (2) detecting the event when it 
occurs; (3) reacting to the event, i.e., carrying out the operations specified in the actions 
(rules) defined over the event. It should be noted that an event is associated with a set of 
parameters that are passed to the condition and action parts of the rule. The condition and 



action parts can utilize these parameters in their execution. [2] Classifies systems based 
upon how and where event detection and action executions are done. According to this 
classification, software systems can be Active, Event-driven, Event source or Call-driven. 

• Active Systems - These systems support both event detection and action execution 
(i.e., react automatically to events). The response is achieved through the run-time 
support part of the development system, according to the rule definitions given by the 
application. Examples are active database management systems; constraint based 
prograrnming systems, etc. 

• Event-driven Systems - These systems support only event detection. The application 
can explicitly request about events detected by the system, but the application is 
responsible for consuming the event and carrying out the action. This is usually 
achieved by continuously polling the system or by callback mechanisms. In a 
callback mechanism, the application is awakened at a certain point of execution when 
the interesting event happens, much like interruptions used to signal external events. 
Examples include most Graphical User Interface (GUI) subsystems. 

• Event source Systems - In event source systems, the application detects the event 
and signals it to the run-time part of the development system or to another 
application. The later system perceives the event as an external event. Examples 
include security alerter in computer-controlled machines and hardware drivers. 

• Call-driven Systems - These systems do not support event detection. The application 
has to detect relevant circumstances and execute the actions. 

The process of augmenting an existing passive system to support active capability 
involves the specification of events and rules, rule management and rule execution. The 
environment into which EC A rules are incorporated has a bearing on some of the above. 
As described in Anwar et al. [3], event detection is considerably complex for an object- 
oriented environment and furthermore, compile time and runtime issues need to be 
addressed. Sentinel, developed at the University of Florida [4], provides active capability 
to OpenOODB, an object-oriented DBMS that does not have active capability. Sentinel 
supports an expressive event specification language (termed Snoop [5]), a Local Event 
Detector that detects events and a Rule Scheduler that schedules the rules and executes 
them. In the process of providing active capability to an OODBMS, Sentinel also 
addresses the fundamental differences between providing active capability to relational 
database systems and object-oriented database systems [6]. Although OODBMSs are 
better in providing support for complex data types when compared to relational DBMSs, 
providing active capability to OODBMSs is more complex than providing active 
capability in relational DBMSs. 

Owing to the C++ implementation of OpenOODB, all the components of Sentinel 
were developed in C++. As already mentioned, the C++ environment had a bearing on 
the active behavior supported, like the types of event parameters allowed, how the 
condition and action parts of the rule were modeled etc. Since C++ does not have a 
mechanism to obtain the type information of a variable at run-time, only known data 
types such as primitive types could be passed as event parameters. In C++, condition and 
action parts of the rule were modeled as C functions rather than C++ methods since it 
was not possible to have a reference to a method of a class. The reference is required in 



order to execute the condition and action parts of the rule when the event is detected. But 
in an object-oriented environment, it would be more useful to execute conditions and 
actions on a class or an object rather than as stand-alone functions. That way, conditions 
and actions can access the attributes defined in the class. These were some of the 
limitations of providing active capability in a C++ environment. This report addresses the 
issues involved in the redesign of the subsystem that provides active capability while 
moving from the C++ environment to the Java environment, as well as overcoming the 
limitations of the C++ environment. Although both C++ and Java are object-oriented 
programming languages, there are some differences in ideologies and capabilities 
provided by them. For example, it is possible to call some of the services of the 
underlying operating system directly from a C++ application whereas Java applications 
cannot directly make any calls to the operating system. As another example, Java 
provides mechanisms to obtain some dynamic information about the application objects 
during runtime whereas C++ does not provide any such mechanism. 

There are several motivations behind our objective of re-designing and 
implementing the active subsystem in the Java environment. First, we would like to 
overcome the limitations of C++ environment in providing active capability. Second, we 
would like to exploit some of the dynamic capabilities provided by the Java environment 
that would be very much applicable and useful for an active system. Finally, we feel there 
is a need for active capability in the Java environment, as more and more OODBMSs 
(Poet, ObjectStore etc.) and Distributed Systems (OrbixWeb) are being developed in 
Java. 

The aim of this report is to design and develop a system that provides support for 
events and rules in Java applications (whether it is a DBMS developed in Java or a 
general Java application) in a seamless manner. This report discusses the architecture, 
design, and implementation of such a system. 

2.  ECARIJLE SEMANTICS 

The design of an active system involves a method for specifying events and 
composite event expressions with associated semantics. A primitive event is an event 
expression comprising a single event in the domain of consideration, and a composite 
event is an event expression comprising a set of constituent primitive events connected 
through one or more composite event operators. Furthermore, composite events can be 
detected in different parameter contexts. This section summarizes the various composite 
event operators, the semantics associated with them and the different parameter contexts 
a composite event is detected, as described in Snoop [7, 8]. Rules can be defined on both 
primitive and composite events. Whenever an event (primitive or composite) is detected, 
the rules associated with that event are executed. Also, rules can be specified with a 
priority, a coupling mode and a triggering mode. This section also discusses the different 
coupling modes and triggering modes associated with a rule as well as rule priority. 



2.1. Primitive Events 
According to Krishnaprasad [9], events are specific points of interest on the time line and 
an event expression defines an interval on the time line. An event is an instantaneous and 
atomic (happening completely or not at all) occurrence. What can be defined as an event 
can be different in different domains. For example, in the relational database domain, 
database operations such as retrieve, insert, update, and delete can be defined as events. 
In the object-oriented domain, method invocations can be defined as events. An event is 
said to occur whenever a method is invoked. Since the execution of a method spans an 
interval of time whereas an event is an instantaneous occurrence, it is necessary to further 
identify a point of interest within the method. Event modifiers were introduced to 
transform an interval (typically formed by a method or procedure execution) to one or 
more events, each of which corresponds to a point of interest within the closed interval 
defined by the method. The begin event modifier denotes an event occurrence at the 
beginning of the method and the end event modifier denotes an event occurrence at the 
end of the method. 

2.2. Composite Events 
Two or more primitive events can be combined to form a composite event expression by 
applying one or more of the event operators defined in snoop. In the absence of event 
operators, several rules may be required to specify a composite event. In most cases, it 
may not be possible to model a composite event in this manner. Sentinel defines a 
composite event as an event obtained by the application of an event modifier to a 
composite event expression. By default, the end event modifier is assumed. 

A composite event expression is defined recursively, as an event expression formed by 
using a set of primitive event expressions, event operators, and composite event 
expressions constructed up to that point. A composite event that is defined using the 
snoop operators NOT, A (AND) and + (PLUS) looks as follows: 

NOT (El, (E2 A E3), (El+"5 sec")) 

As indicated in the above expression, it is possible to nest composite event expressions. 
In addition to the nesting of composite events, it is also possible to use an event sub- 
expression in more than one event expression. Below, each composite event operator and 
its semantics is briefly described. The upper case letter E is used to represent an event 
type and the lower case letter e is used to represent an instance of the event E. 
Superscripts are used to denote the relative time of occurrence with respect to events of 
the same type. An event E (primitive or composite) is a function from the time domain 
onto the Boolean values, True and False. The function is given by 

E(t) = True if an event of type E occurs at time point t 

False otherwise 

The negation of an event is given by ~E. Given a time point, it computes the non- 
occurrence of an event at that point. The Snoop event operators and the semantics of 
composite events formed by these event operators are as follows- 



• OR (V): Disjunction of two events Ei and E2 denoted by Ei V E2, occurs when either 
Ei occurs or E2 occurs. 

• AND (A): Conjunction of two events Ei and E2, denoted by Ei A E2 occurs when 
both Ei and E2 occur, irrespective of their order of occurrence. 

• SEQUENCE (;): Sequence of two events Ei and E2, denoted by Ei;E2 occurs when 
E2 occurs provided Ei has already occurred. This implies that the time of occurrence 
of Ei is guaranteed to be less than the time of occurrence of E2. 

• NOT (-1): The not operator, denoted by -i(E2)[Ei,E3] detects the non-occurrence of 
the event E2 in the closed interval formed by Ei and E3. 

• Aperiodic Event Operators (A, A*): The Aperiodic operator A allows one to 
express the occurrence of an aperiodic event in the half-open interval formed by Ei 
and E3. There are two variations of this event specification. The non-cumulative 
variant of an aperiodic event is expressed as A (Ei, E2, E3), where Ei, E2 and E3 are 
arbitrary events. The event A is signaled each time E2 occurs during the half-open 
interval defined by Ei and E3. A can occur zero or more times (zero times either when 
E2 does not occur in the interval or when no interval exists for the definitions of Ei 
and E3). 

There are situations when a given event is signaled more than once during a given 
interval (e.g. within a transaction), but rather than detecting the event and firing the rule 
every time the event occurs, the rule has to be fired only once. To meet this requirement, 
there is an operator A* (Ei,E2,E3) that occurs only once when E3 occurs and accumulates 
the occurrences of E2 in the half-open interval formed by Ei and E3. This constructor is 
useful for integrity checking in databases and for collecting parameters of an event over 
an interval for computing aggregates. As an example, the highest or lowest stock price 
can be computed over an interval using this operator. 

In this formulation E2 is not included because the occurrence of the composite event A 
which coincides with the occurrence of E3 is not constrained by the occurrence of E2. 
However, the parameters of A will contain the parameters of E2. 

• Periodic Event Operators (P, P*): A periodic event is an event E that repeats itself 
within a constant and finite amount of time. Only a time specification is meaningful 
for E. The notation used for expressing a periodic event is P (Ei,[t],E3) where Ei and 
E3 are events and t is the time specification. P occurs for every t in the half-open 
interval (Ei,E3J- * is assumed to be positive. 

2.3.    Parameter Contexts 
As mentioned before, composite events can be detected in more than one parameter 
context. The notion of parameter contexts was primarily introduced for the purpose of 
capturing application semantics while computing the parameters of composite events 
when they are not unique. They serve the purpose of disambiguating the parameter 
computation and at the same time accommodate a wide range of application requirements 
[9]. It is to be noted that the semantics of a primitive event is identical in all contexts. The 
parameter contexts proposed by Snoop are explained below. The contexts are defined 
using the notion of initiator and terminator events. An initiator event initiates or starts the 



detection of a composite event and a terminator event completes the detection of the 
composite event. For example, for the sequence event Ei;E2, Ei will be the initiator event 
and E2 will be the terminator event. 

• Recent: In the recent context, only the most recent occurrence of the initiator for any 
event (primitive or composite) that has started the detection ofthat event is used. 
When the event occurs, the event is detected and all the occurrences of events that 
cannot be the initiators ofthat event in the future are deleted. In this context, not all 
occurrences of a constituent event will be used in detecting a composite event. 
Furthermore, an initiator of an event will continue to initiate new event occurrences 
until a new initiator occurs. 

• Chronicle: In the chronicle context, the initiator-terminator pair is unique for an 
event occurrence. The oldest initiator is paired with the oldest terminator for each 
event (i.e., in chronological order of occurrence). In this context, the same primitive 
event occurrence is used at most once for computing the parameters of the composite 
event. 

• Continuous: In the continuous context, each initiator of an event starts the detection 
ofthat event. A terminator event occurrence may detect one or more occurrences of 
the same event. The initiator and terminator are discarded after an event is detected. 
There is a subtle difference between the chronicle and the continuous contexts. In the 
former, pairing of the initiator is with a unique terminator of the event whereas in the 
latter multiple initiators can be paired with a single terminator ofthat event. 

• Cumulative: In the cumulative context, all occurrences of an event type are 
accumulated as instances ofthat event until the event is detected. Whenever an event 
is detected, all the occurrences that are used for detecting that event are deleted. 
Unlike the continuous context, an event occurrence does not participate in two 
distinct occurrences of the same event in the cumulative context. 

As mentioned earlier, rules can be defined both on primitive and composite events. A rule 
consists of a condition and an action. A condition is a Boolean entity that either returns 
true or false and an action is simply a set of statements. When an event occurs, the action 
is executed only if the condition evaluates to true. A rule can be specified with a coupling 
mode, a triggering mode and a priority. The coming sections describe these attributes of a 
rule. 

2.4.    Coupling Modes 
Coupling modes as described in HiPAC [1], specify when a rule is to be executed relative 
to the event firing the rule. They were initially proposed for a transaction based execution 
environment such as a DBMS. In a transaction based execution environment, all the 
events occur within some transaction. The coupling mode of the rule indicates when a 
rule should be executed relative to the event occurring in the triggering transaction. 
HiPAC defines three coupling modes, namely the immediate, deferred and the detached 
modes. The three coupling modes are briefly explained below. It should be noted that the 
execution environment of object-oriented applications, the environment for which active 
capability is being proposed in this report, is not transaction-based. In the definitions 
below, the difference in the meaning of the coupling modes between a transaction based 



environment and a non-transaction based environment (the current environment) is also 
explained. 

• Immediate: In the immediate coupling mode, the fired rule is executed immediately 
after the event is detected, in which case the execution of the triggering transaction is 
suspended until the rule is executed. In a non-transaction-based environment, the 
execution of the application that raises the event is suspended until the rule is 
executed. 

• Deferred: In the deferred mode, the execution of a fired rule is deferred to the end of 
the transaction i.e., the rule is executed just before the triggering transaction commits. 
However, there are no transaction boundaries in a non-transaction-based 
environment. For this purpose, we define two events named executeDeferredRules 
and discardDeferredRules. All the deferred rules are accumulated from the beginning 
of the application and executed when the executeDeferredRules event is explicitly 
raised by the application. The application can also raise the discardDeferredRules 
event at which point all the deferred rules accumulated thus far are discarded. It is 
implicit that whenever a deferred rule is fired, it is accumulated. The accumulated 
rules are either executed or discarded depending on one of the above events explicitly 
raised by the application. Thus, unlike a transaction-based environment where the 
deferred rules fired in a transaction are executed at transaction commit time; deferred 
rules are executed by an explicit event raised by the application, in our case. 

• Detached: Li the detached mode, the rule is executed in a separate transaction but 
after the triggering transaction has committed. Note that in the deferred mode, 
although the rule is executed at transaction commit time, it is executed in the same 
transaction as the triggering transaction. On the other hand, a rule in the detached 
mode is executed in a separate transaction from the triggering transaction, after the 
triggering transaction commits. Since there are no transactions in the current 
environment, the detached mode is not supported in the current implementation. 

Although the above explanation speaks about the coupling between an event and a rule, 
there actually exists a coupling between the event and the condition as well as the 
condition and the action. The coupling between an event and the condition indicates 
when the condition is evaluated relative to the event and the coupling between the 
condition and the action indicates when the action is executed relative to the condition 
evaluation. However, our implementation does not currently support the coupling 
between the condition and the action. The condition and the action of a rule are always 
executed together. The current implementation only supports the coupling between the 
event and the rule. The next section describes another attribute of a rule definition, 
namely the triggering mode of a rule. 

2.5.    Trigger Modes 
In Sentinel, event and rule definitions can be placed anywhere within the application. It 
should be noted that only named events could be used in rule definitions. Intermediate 
event expressions that are not named cannot be associated with a rule. The definition of 
an event that is used in a rule definition precedes the definition of the rule. As a result, it 
is possible that event occurrences that temporally precede the rule definition time itself 



trigger a rule. As this might not be desirable in all situations, there is an option (the rule 
trigger-mode) for specifying the time from which event occurrences to be considered for 
the rule. Two options, NOW (start detecting all component events starting from this time 
instant) and PREVIOUS (all component events since the event was detected last are 
acceptable) are supported as rule-triggered modes, with NOW being the default. It should 
also be mentioned that an event is detected only if there are rules defined on that event. 
The way the current implementation supports these two rule triggering modes is 
explained below. 

When a rule is defined, the value of the event occurrence counter (a long integer variable) 
at the time of rule definition is noted and the information is stored along with the rule. 
This serves as the timestamp of the rule. Whenever a rule is being fired, it is checked 
whether the triggering mode specified in the definition of this rule is NOW or 
PREVIOUS. If the rule trigger mode is NOW, it is checked if the timestamp of the rule is 
greater than the timestamps of all the component events that participated in the detection 
of the current event. If the timestamp of the rule is greater than the timestamps of all the 
component events, it means that all the component events have occurred after the rule 
definition time and the rule with triggering mode NOW is fired. Otherwise, the rule is not 
fired even though the event is detected. On the other hand, if the rule-triggering mode is 
PREVIOUS, the rule is fired without making the above check. This is because the 
component events that are detected both prior to the rule definition and after the rule 
definition time can be used in rule execution in the PREVIOUS rule trigger mode. 

2.6.    Rule Priority 
In addition to the parameter context, coupling mode and trigger mode associated with a 
rule, there is also a priority assigned to each rule. The default priority of a rule is a 
priority of 1. The priorities increase with the increase in numerical values i.e., 2 is a 
higher priority than 1,3 is a higher priority than 2 and so on. Rules of the same priority 
are executed concurrently and rules of a higher priority are always executed before rules 
of a lower priority. It is possible that a rule raises events that in turn could fire more rules 
and so on. This results in a cascaded rule execution. Furthermore, rules can be specified 
either in the immediate coupling mode or the deferred coupling mode. Both the priority 
and coupling mode of a rule have to be taken into account for scheduling the rule for 
execution. The scheduling of rules based on their priority and coupling modes is 
described in Section 5. 

3.   OVERVIEW OF RELATED WORK 

This section discusses the other works in the field of computer science that focused on 
active capability in object-oriented database systems (OODBMS) as well as other object- 
oriented systems. 

3.1.     Ode 
Ode [10] is a database system that is based on the object-oriented paradigm. Active 
behavior in Ode is presented by incorporating constraints and triggers [11] without the 
notion of ECA rules. Both constraints and triggers consist of a condition and an action. 



Constraints and triggers are defined declaratively within a class definition. Constraints 
are applicable to all instances of a class in which they are declared, as well as its 
subclasses. They are used to maintain the consistency of an object. Triggers on the other 
hand, are used for purposes other than object consistency and are applicable only to the 
instances of the class in which they are declared. The user specifies these explicitly. A 
condition C,is paired with an action A,- only, forming a constraint or trigger. Constraints 
and triggers are fired as a result of the invocation of any non-constant member function. 
Thus events in Ode are considered as the disjunction of all non-constant member 
functions. A non-constant member function changes the values of the attributes of a class 
whereas a constant member function does not. Events are generated as a result of the 
invocation of non-constant public member functions. Private and protected member 
functions do not generate events. All events signaled by an object of class 'A' cause the 
evaluation of all constraints and triggers declared within class 'A'. Constraints and 
triggers are precompiled into each place in the code where they might be activated, 
specifically, at the end of each non-constant public member function and before the 
commit of every transaction. 

Ode has also proposed a language for specifying composite events. Basic (primitive) 
events are defined and composite events are constructed by applying operators to basic 
events. The basic events that are supported are object state events (creation, deletion, 
access, update and read) method execution events, (before or after the execution of a 
method) timed events and transaction events. The event operators supported are relative, 
prior, sequence, choose, every, fa andfaAbs. An event occurrence is represented as tuple 
of the form <primitive event, event identified. An example of an event identifier is 
defined as the time at which the primitive event occurred. Basic events can be qualified 
with a mask, thus producing logical events. A mask is an optional predicate that allows 
users to specify more complex events. In Ode, detection of composite events is 
accomplished by using finite automata. Each event expression has an automaton 
associated with it that reaches the acceptance state when the event is raised. Input to the 
automaton is the event history and the sequence of logical events of the object with which 
the automaton is associated. An event history is defined as a set of event occurrences with 
no two-event occurrences having the same event identifier. 

Events in Ode are treated as expressions declared within class definitions at compile time. 
This approach has several disadvantages. First, the treatment of events as expressions 
results in a dichotomy between events and other objects. Second, events cannot be 
created, deleted and modified dynamically. In addition, the introduction of new event 
types, attributes and operations requires major modifications, thus compromising the 
system's extensibility. The major disadvantage of this approach is the inability to express 
complex events that are raised by occurrences of events in different classes. In other 
words, Ode adopts a local view of complex events - a complex event defined in a class 
can only be raised by events occurring in the same class. 

3.2.     ADAM 
ADAM [12] is an active OODB implemented in PROLOG. It adopts the ECA format for 
specifying rules and treats rules in the same way as other objects in the system. Thus it 
provides a uniform treatment to rules and other application objects. Within the rule 
object, rule operations are implemented as methods. ADAM supports database events, 



clock events and application events. Events in ADAM are generated either before or after 
the execution of a method. In order to create an event, the user must specify the name of 
the method generating the event and when the event should be raised. Events are also 
treated as objects that are created, modified and deleted in the same fashion as other 
objects. When an event is raised, all the method's arguments are passed by the system to 
the condition and action parts of the rule. Thus, the condition and action code may use the 
method arguments during their execution. ADAM does not support complex events due 
to its treatment of events as objects. ADAM supports only the immediate coupling mode 
and does not support the other coupling modes proposed in HiPAC. 

As mentioned earlier, rules in ADAM are treated as objects. An object's definition is 
enlarged to indicate which rules to check when the object raises an event. Inheritance of 
rales from super classes to subclasses is supported. However, the way by which 
inheritance is supported is specific to PROLOG and hence cannot be easily applied to 
other object-oriented programming languages. A rule defined in a class is applicable to 
all the instances of the class. ADAM does not efficiently allow a rule to be applicable to 
only one instance of a class. This is accomplished by disabling the rule for all other 
instances. ADAM allows the modification of condition and action parts of the rule 
dynamically at run time. Thus, rule implementation could be either provided either at 
compile time or run time. The interpretive environment in which ADAM is implemented 
causes the dynamic characteristics provided by ADAM. Our implementation also allows 
dynamic rule modification. Although Java is not fully interpretive, it is possible to 
modify the rule implementation at run time. This is due to the dynamic class-loading 
feature available in Java. 

3.3.     Samos 
Samos [13, 14] addresses event specification and detection in the context of active object- 
oriented databases. Although there are some differences between Snoop and Samos in the 
event specification languages, they differ primarily in the mechanism for event detection. 
Samos uses modified colored Petri nets called Samos Petri Nets to allow flow of 
information about the event parameters as well as the event occurrence. 

Petri nets are not as efficient as an event graph for detecting composite events. This can 
be explained by a small example. Consider three primitive events El, E2 and E3 and two 
composite events Cl (El; E2) and C2 (El, E3). Note that El appears both in Cl and C2. 
To combine the Petri Nets for the two composite events, El has to be duplicated into El' 
and El". This results in duplicating Petri nets equal to the number of common event 
expressions that El participates in. Duplication of events leads to unnecessary and 
excessive storage requirements. In contrast, the event graph does not duplicate events and 
thus offers a more optimal usage of memory. 

Also, Samos detects events only in the chronicle context. But, event detection in the other 
contexts too may be useful for some applications. In our implementation, the semantics 
of contexts is built into the operator nodes. Thus, a single instance of the event graph 
detects events in all the four contexts. Samos has to generate a different Petri Net for each 
context. Again, this demands very high storage requirements and the processing could 
also be slower because of the high storage needed. Also, we can generate the event graph 
as and when the event expression is specified and the context information could be added 
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later. But Petri Nets need to be built again if the context information is not specified 
beforehand but added afterwards. 

Samos uses the layered approach for providing active capability. In a layered approach 
the underlying DBMS is augmented with a layer that is responsible for providing active 
capability. There may be some limitations on the class of EC A rules that can be 
supported using this approach. For example, immediate coupling mode may not be 
possible as the layer may not be able to suspend a transaction that is being executed by 
the underlying DBMS. Also, explicit and other temporal events cannot be supported in 
this approach without resorting to polling. One last mention about Samos is that it 
addresses the issue of composite event detection and rule management but does not 
discuss the issues of rule execution. 

3.4. Vitria BusinessWare Process Automator 
The Process Automator in Vitria BusinessWare [17] provides a modeling environment 
that captures business objects, events, rules and processes and uses them to build a 
collection of business policies. It incorporates four modeling techniques into an 
integrated process-development environment: business object models, business event 
models, business process (or "state") models and business rules. It uses a graphical 
modeling language to create process charts that describe the different stages of a business 
process. Process charts use graphical elements to describe processes in terms of discrete 
states and the conditions that cause the business object to move through various stages of 
the process by means of transition between states. Business rules and policies are 
expressed in event-condition-action sequences. After model states and transitions are 
defined in the process chart, the business rules for the process are defined using a forms- 
based rule editor. The rule editor is used to specify the processing condition and action 
when a transition occurs between the process states. Thus, an event is a transition from 
one state to the other. A rule condition compares a process variable with some value and 
such relational comparisons can be connected through logical operators. The rule action 
invokes methods on process objects. It has no support for composite events and context 
based event detection unlike our system. Also, rules cannot be specified with a priority. 
Rule conditions cannot perform complex computations unlike in our system. Since 
conditions are implemented as methods in our system, they can perform any operations 
that are permissible in a Java method. 

3.5. WebLogic Events 
WebLogic Events [18] is an event notification and management service from WebLogic. 
It provides event registration and notification between applications across a network. It 
has a server that stores the event registrations from any application across the network. 
Event registrations are stored in a Topic Tree, which is a hierarchical, n-ary tree of 
period-separated words, where each word represents a node at a particular level in the 
tree. Each level in the hierarchy represents a greater level of specificity. The whole event. 
service flows through the Topic Tree. When an application publishes an event, it is 
propagated down through the topic tree until it reaches the registration corresponding to 
the topic. When the event matches a registration, the registration's 'evaluate' method is 
called, and if the evaluation succeeds, the 'action' method of the registration is called. 
The 'evaluate' and 'action' methods associated with each registration correspond to the 
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condition and action of a rule. Since a registration is associated with a single evaluate and 
action pair, only a single rule can be defined on an event whereas our system allows for 
multiple rules to be defined on an event. The fundamental operations that can be 
performed on the topic tree are listed below: 

• EventRegistration operations - An application registers interest in a particular 
topic (a node in the topic tree), by sending an EventRegistration. 

• EventMessage operations - Any application on the network can generate an event 
for a particular topic, by sending an EventMessage. 

The topic tree is dynamically built inside the WebLogic server as clients subscribe to 
event topics. If a client subscribes to an event topic that does not exist in the topic tree, a 
new node is created corresponding to the event. It can be seen that only the leaf nodes in 
the topic tree correspond to events and all the intermediate nodes are merely used as a 
branching condition. All the leaf nodes correspond to primitive events and there is no 
mechanism to combine the primitive events to form composite events. 

The WebLogic Event Server provides communications between applications via a 
subscribe and publish paradigm. When a client subscribes to an event on a WebLogic 
server, it can specify extra conditions that must be satisfied before an event is forwarded 
to it. This is achieved via an evaluator that runs on the server. The evaluator checks the 
conditions specified by the client before forwarding the event to the client. The event 
action 0 mentioned above executes either at the server or the client. WebLogic also 
supports event parameters as a set of name-value pairs that further qualify the event. An 
event is submitted to the server with a set of event parameters. 

3.6.    Sentinel 
Sentinel [4, 5,19,20,21] is an integrated active DBMS incorporating ECA rules using 
the Open OODB Toolkit from Texas Instruments. Event and rule specifications are 
seamlessly incorporated into the C++ language. Any method of an object class is a 
potential primitive event. The event occurs either at the beginning of the method or at the 
end of the method. Composite events are defined by applying a set of operators to 
primitive events and/or composite events. Events and rules are specified in a class 
definition. In addition, Sentinel supports events and rules that are applicable to a specific 
object instance alone. In that case, events and rules are specified within the program 
where the instance variables are declared. This ability to declare events and rules outside 
of a class allows for composing events across classes. It can be recalled that a significant 
drawback of Ode was that a composite event could only be composed of events within 
the same class but not from different classes. This is because Ode does not support event 
definitions outside the class. Sentinel overcomes this drawback by allowing event 
definitions outside the classes too. 

The parameters of a primitive event correspond to the parameters of the method declared 
as the primitive event and other attributes, such as the time of occurrence of the event. 
The processing of a composite event involves not only its detection, but also the 
computation of the parameters associated with the composite event. The parameters of 
the event (primitive or composite) are passed onto condition and action portions of a rule. 
The parameters associated with the detection of an event can be different in different 
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contexts. Sentinel supports all the four-parameter contexts specified in HiPAC namely, 
recent, chronicle, continuous and cumulative contexts. 

An event can trigger several rules, and rule actions may raise events that can trigger other 
rules. Sentinel supports multiple rule executions, nested rules executions as well as 
prioritized rule executions. Out of the three coupling modes (immediate, deferred and 
detached) specified in HiPAC, Sentinel currently supports immediate and deferred modes 
of rule execution. 

4.  DESIGN OF THE EVENT DETECTOR 

This section describes the design of the event detector in Java. First, it mentions the 
functionality that is to be supported by the event detector and then it describes how the 
event detector has been designed to accomplish this functionality. This section also 
describes the main classes used in the implementation and the hierarchy among these 
classes. It also discusses the differences between C++ and Java approaches to implement 
active capability in an object-oriented environment. 

The event detector should provide API to user applications for defining primitive and 
composite events as well as to define rules on the events. Besides, the event detector 
should also contain the detection logic for detecting composite events that are defined 
using any of the snoop event operators described in Section 2. Finally, when the events 
are detected, the rules defined on those events should be executed based on their coupling 
mode and priority. The next section describes the types of events that can be defined and 
are detected by the event detector. 

4.1.     Types of Events 
As defined earlier, an event is an instantaneous and atomic occurrence. Further, events 
could be either primitive or composite. A Java application is a collection of classes and 
each class is a collection of attributes and methods. The application logic mostly consists 
of invoking methods on objects of these classes. For this reason, method invocations are 
treated as primitive events. Since an event is instantaneous, the primitive event is 
specified to occur either at the beginning of the method or at the end of the method. It 
should be noted that all methods are potential primitive events. When a method of a class 
is defined as a primitive event, an event occurs when any instance of the class invokes the 
method. But in some cases, the user may be interested in an event only when a particular 
instance or instances of the class invoke the method. In this case, the event should be 
detected only when certain instances invoke the method, but not all instances. To 
accommodate this, the notion of class level and instance level events is introduced. A 
method can be defined either as a class level or an instance level event. If the method is 
defined as a class level event, an event is detected when any instance of the class invokes 
the method. If the method is defined as an instance level event, the event is detected only 
when a particular instance of the class invokes the method. The instance is specified in 
the definition of the instance level event. A class level primitive event that is specified 
using snoop syntax is shown below. 

event begin (setPriceBegin) void setPrice(fioat price) 
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The above denotes a primitive event named 'setPriceBegin' that occurs at the beginning 
of the setPrice method. Thus, the definition of a primitive event includes the name of the 
event, the signature of the method and the event modifier (begin or end). All primitive 
events should be named since they can be used in a composite event expression. An 
instance level primitive event in snoop syntax is shown below. 

event end (setPriceIBMEnd:IBM) void setPrice(float price) 

Here, IBM is the name of an instance of a class in which the setPrice method is defined. 
This event occurs only when the IBM instance invokes the setPrice method. Of course, 
the instance should be defined before defining the instance level event. It should be noted 
that class level events can be specified within the class definition but instance level 
events can be specified only where the instance is declared, either in the class or in the 
application. 

Composite events are defined by applying one or more snoop operators to the primitive 
events and other composite events already defined. A composite event defined using 
snoop operators described in Section 2 can be defined as follows: 

event or Event = (el ;e2) | (e3 A e4) 

La addition, the application can also define temporal events that are detected at a specific 
clock tick. Temporal event definitions have time expressions instead of method 
signatures and event modifiers. There are two types of temporal events - absolute and 
relative. Absolute events occur at a specific point in time. For example, an event that is 
specified to occur on August 11,1999 at 11:30:45 (during the last total solar eclipse of 
the millennium) is an absolute temporal event. The definition of this absolute event looks 
as follows: 

event eAbs = [11:30:45/08/11/1999] 

A relative temporal event is defined by specifying a relative time expression in the 
definition of a composite event using one of P, P* or PLUS operators. The snoop 
expressions of relative temporal events look as follows: 

event ePlus = setPriceBegin + [5 sec] 

event ePeriodic = P(setPriceIBMEnd, [ 5 min 10 sec], buyStocklBMBegin) 

The events specified in the above expressions can be either primitive or composite. 
Apart from these, there are external events too as mentioned in Section 1. External events 
occur outside the application and these occurrences are signaled to the event detector by 
some means that is specific to the domain of the event. For example, when a radar detects 
an unidentified object, it may be signaled to the event detector by some kind of update 
made to the application. To raise this event from the application, it has to be associated 
with an event signature. It may be recalled that all method events have their method 
signature as the event signature. The purpose of this event signature is to associate a 
unique string with an event. When an event is raised, its signature is used to uniquely 
identify the event. To facilitate the raising of external events from the application, they 
can be associated with a unique string that is specified at the time of event definition. The 
same string is used while raising the event, in order to uniquely identify the event. 
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It should be noted that every event is associated with a set of parameters that may be used 
in the execution of rules defined over the event. The next section discusses the types of 
event parameters that can be supported in the Java environment. 

4.2. Event Parameters 
It is necessary to associate an event with a set of parameters that are passed to the rule. 
This is because the rule should take the appropriate action depending upon the values of 
these parameters at the time the event occurred. Typically, the rule condition checks the 
values of one or more parameters of the event to see if the values satisfy a particular 
condition. The action part of the rule is executed only if the condition returns true. Since 
events are defined as method invocations, the arguments that are passed to a method are 
treated as the parameters for that event. Primitive data types (int, float etc), object data 
types defined by Java (String, Integer etc) and user defined data types can all be passed as 
arguments to a method. Therefore, all these types should be supported as event 
parameters. 

There should be a mechanism for collecting the parameters of an event, storing them and 
then retrieving individual parameters from the parameter set. In Java, there is a generic 
Object data type that can contain a reference to an instance of any class type. This data 
type is used to store all the parameters in the parameter list. Primitive data types are 
stored in the parameter list after converting them to their object equivalents. During 
parameter retrieval, the primitive value stored in the object is returned. Class data types 
are stored as generic objects and they are returned as is during parameter retrieval. It is 
the responsibility of the user to cast the object to the appropriate type after retrieving it 
from the parameter list. In C++, there is no such generic data type that can store both 
primitive data types and pointers. Hence only primitive data types could be supported as 
event parameters. 

A primitive event is associated with a single set of parameters whereas a composite event 
is associated with multiple sets of parameters, that is, the collection of the parameter sets 
of all the constituent primitive events. These parameters are stored in the event handle 
and are passed to the rule, where the values of the parameters can be retrieved and used. 
The next section on implementation describes the data structures used for storing the 
parameters and the way parameters are inserted and retrieved from an event handle. The 
next section describes how a rule is modeled based on the ECA rule paradigm. 

4.3. Rules 
A rule as mentioned earlier, consists of a condition and an action. A condition is a 
function that returns a Boolean value. Since all execution in a Java application is through 
methods defined in a class, rule condition and action are defined as methods associated 
with some class. There is one important capability required for defining conditions and 
actions as methods. It should be noted that the condition and action are pieces of code to 
be executed. When the rule is fired, the application should be able to jump to the place 
where the condition and action codes are located, and execute them. This is. possible if 
there is a reference that can point to the appropriate pieces of code. C++ does not support 
references to methods declared in a class but there can be references possible to C 
functions via function pointers. For this reason, conditions and actions are implemented 
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as functions in the C++ implementation. But Java supports references to class methods 
and hence conditions and actions can be implemented as methods in Java. If the condition 
and action are implemented as methods of a class, all the attributes of the class can be 
used in condition checking as well as action execution. This is not possible if conditions 
and actions are implemented as functions. 

Java reflections are used to obtain the references to the condition and action methods 
defined in a class. Unlike other methods, condition and action methods cannot be passed 
any number of arguments. Only a fixed number and type of arguments can be passed to 
these methods. This is because the arguments passed to a condition and action method 
should be known to the event detector in order to obtain references to these methods 
using Java reflections, at run time. Therefore, all condition and action methods take a 
single argument of type ListOfParameterLists. This data type is defined in the event 
detector, which stores a list of parameter lists. A parameter list is a set of parameters 
associated with a primitive event. The following code segment shows how a reference to 
a method is obtained. 

ClassQ methodParams = new Classfl]; 
methodParams[0] = Class.forName("Sentinel.ListOfParameterLists"); 
Class classObj = Class.forName("Stock"); 
Method methodObj = classObj.getDeclaredMethod("checkPrice", methodParams); 

In addition to a condition and an action, there are other attributes associated with a rule 
that are described in Section 2. These are the coupling mode, trigger mode and the 
priority. As mentioned in Section 2, composite events can be detected in different 
contexts. If the user wants a composite event to be detected in two different contexts and 
define rules on them, he has to specify the same event expression in two event definitions 
(one for each context) and define rules on each of them. This results in two event 
definitions although both of them contain the same event expression. This can be avoided 
if the context information is specified as part the rule definition, instead of specifying it 
as part of the event definition. Now, the composite event is defined only once and the rule 
defined in a particular context is fired only if the event is detected in the same context. 
Thus, the parameter context is also specified in the definition of a rule. The snoop 
expression for a rule definition is shown as: 

rule rlfsetPriceEnd, checkPrice, buyStock, RECENT, IMMEDIATE, NOW, 5] 

where 'checkPrice' and 'buyStock' are the names of the condition and action methods, 
respectively, and the rule is defined in the immediate coupling mode, with trigger mode 
now and a priority of 5. The rule is fired only when event 'setPriceEnd' is detected in the 
recent context. It should be noted that the above attributes of the rules are optional 
parameters. If the user does not specify any of the parameters, the default values will be 
associated with the rule. The default context is the recent context, the default-coupling 
mode is immediate, the default trigger mode is now and the default priority is 1. 

In addition to adding rules for an event, a rule can also be deleted at any time within the 
application. It is also possible to disable a rule at any time and enable it again. When a 
rule is deleted, the rule is removed and is no longer available to the application. If the 
application wants the rule at a later point, the rule has to be created again. On the other 
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hand, when a rule is disabled, it is marked disabled but not removed. The application can 
enable it again at a later point without having to create the rule again. 

4.4. Instance Level Rules 
As mentioned in section 4.1, it is possible to define instance level events. The definition 
of an instance level event takes the name of the instance as one of its arguments. These 
events are named and can be used in composite event expressions. In many applications, 
a number of rules are defined on instance level events. Rules defined on instance level 
events are called instance level rules. Defining an instance level rule typically involves 
two steps: (1) defining the instance level event and (2) defining the rule on the instance 
level event. These two steps are shown below: 

event begin(setPriceIBMEnd:IBM) void setPrice(float price) 

rule rl[setPriceIBMEnd, checkPrice, buyStock] 

Most of these instance level events are not used in composite event expressions. As will 
be explained section 4.6, all events are represented as an event node in an event graph. It 
is not necessary to create separate primitive event nodes for these instance level events if 
they are not used in composition. Thus, in order to combine the above two steps of 
defining an instance level rule into one step, another form of rule definition is introduced 
which is shown as: 

rule r 1 [setPriceEnd, IBM, checkPrice, buyStock] 

Here, the name of the instance is specified in the rule definition. It is not required to 
define the instance level event on IBM instance in this case. 'setPriceEnd' is a class level 
event whose definition looks like: 

event end(setPriceEnd) void setPrice(float price) 

In order to accommodate instance level rules, a primitive event node contains a special 
data structure. This will be explained in section 4.6.1. The next section describes the 
important classes used in the implementation and the hierarchy among those classes. 

4.5. Class Hierarchy 
Figure 1 depicts the hierarchy among the key classes used in the implementation. There 
is one class for each event operator and a class for a primitive event. A primitive event 
can be either a temporal event, a local event (event detected within the application) or a 
global event (event detected outside the application). There is also a rule class that is used 
to instantiate rule objects. 

In Figure 1 different fonts depict different kinds of classes. The classes Event and 
Composite are abstract classes, the classes Notifiable and Executable are interface 
classes and all the other class names in italics are normal classes. An abstract class is a 
class that can only be sub-classed but cannot be instantiated. For example, the Event class 
is an abstract class that can only be sub-classed but cannot be instantiated. This is because 
although there are instances of primitive, temporal, and composite events (AND and SEQ 
for example), there is no need to instantiate an event itself. 
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Figure 1 Class Hierarchy 

An interface is a collection of method definitions (without implementations) that indicate 
a certain behavior of the classes that implement the interface. The classes that implement 
an interface provide implementations for the methods in the interface. For example, the 
Notifiable interface has a notifyEvent method that is implemented by all the operator 
classes. The notifyEvent method implements the detection logic in an operator class 
according to the semantics of the operator. The classes AND, SEQ, and NOT are normal 
classes whose instances represent the composite event nodes in the event graph. The 
event graph is described in the next section. 

4.6.    Event Graph 

The application defines a set of primitive events, composite events and rules on events 
(both primitive and composite). The relationship between these entities is established by 
means of a subscription and notification mechanism that is represented by means of an 
event graph. An event graph is a graph whose nodes are the primitive events, composite 
events and rules defined in the application. A composite event subscribes to all its 
constituent primitive events and the composite event is notified whenever the constituent 
primitive events are detected. Similarly, rules are also subscribed to events and are 
notified whenever the events are detected. 
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Figure 2 An Example Event Graph 

Figure 2 depicts an example event graph for the following composite event: 

event notEvent = NOT((el A e2), e3, (e4 + [5 sec])) 

Each event is represented as an event node in the graph, and the event nodes are 
connected by their subscription relationships. An internal node of the event graph 
represents a composite event whereas a leaf node represents a primitive event. Every 
node in the event graph has a list of event subscribers and a list of rule subscribers. The 
list of rule subscribers contains references to the rule objects that denote the rules defined 
for that event. The list of event subscribers contains references to the event nodes of those 
composite events that have subscribed to the event. A composite event subscribes to the 
event nodes of all its constituent events. 

4.6.1 Primitive Event Node 
A primitive event node is a leaf node of the event graph that denotes a primitive event. 
The primitive event can be either local or global. Local events occur within the 
application and global events are external events that occur outside the application. A 
primitive event node is created for every primitive event (class level or instance level) 
defined in the application. It contains the name of the primitive event, the method 
signature and the event modifier specified in the primitive event definition. Apart from 
these, in order to accommodate the instance level rules described in section 4.4, a 
primitive event node contains an instance-rule list that contains a list of instances and a 
list of rules associated with each instance. 

As shown in Figure 3, class level rules are associated with a null instance and instance 
level rules are associated with the instance specified in the definition of the instance level 
rule, as mentioned in section 4.4. Storing all the instance level rules in the same primitive 
event node would reduce the overhead of creating multiple event nodes. The event nodes 
are not necessary if the corresponding events are used only for defining rules but not in 
any composite event expression. 
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Separate primitive event nodes are created for those instance level events that are 
explicitly defined by the user application. This is because these events can be used in 
composite event expressions. In the nodes for these events, the instance-rule list contains 
only a single instance and the set of rules defined on this instance level event. 

Instances Rules 

null 

IBM 

MSFT 

IFMX 1 

Figure 3 An Instance list associated with a primitive event 

4.6.2 Composite Event Node 

A composite event consists of two or more primitive events. The composite event node 
stores the name of the composite event, the references to the nodes of its constituent 
events and the parameters of all the constituent events. Both primitive and composite 
event nodes also store the list of subscribed events and the list of rules defined over that 
event The parameters of a constituent event are stored in a data structure called the event 
table. The event table is described in the next subsection. 

4.6.3 Event Table 

Figure 4 shows an event table. An event table consists of a set of event entries. Each 
entry in an event table denotes an event occurrence. An event entry consists of a set of 
primitive events (that is, a list of parameter lists) and four bits. It should be noted that the 
constituent events of a composite event can be composite events themselves. As already 
mentioned, a single parameter list denotes a primitive event occurrence and a list of 
parameter lists denote a composite event occurrence. The four bits stored in an event 
entry are used to detect a composite event in different contexts. Composite event 
detection in different parameter contexts using these four bits is explained in the next 
section. 
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Figure 4 An Event Table 

4.6.4 Rule Node 
The rule node stores the name of the rule, the references to the condition and action 
methods, the context, coupling mode, triggering mode and the priority of the rule. The 
rule node also stores a rule enable/disable flag that is used to indicate whether the rule is 
enabled or not. 

4.7.     C++ Versus Java Approach 
Since Sentinel has an event detector implemented in C++, it would be worthwhile to 
bring out the differences between C++ and Java languages in terms of what they allowed 
us to do and not to do, while implementing the event detector. The following subsections 
illustrate the differences between the C++ and Java approaches. 

4.7.1 Representation of a Rule 
As it is known, a rule has three components namely event, condition and an action. All 
the three components are specified as part of the rule definition. It should be noted that 
the condition and action are pieces of code to be executed. When an event occurs, the 
application should be able to jump to the place where the condition and action codes are 
located, and execute them. This is possible if there is a reference that can point to the 
appropriate pieces of code. C++ does not support references to methods declared in a 
class but there can be references possible to C functions via function pointers. For this 
reason, conditions and actions are implemented as functions in C++. But Java supports 
references to class methods and hence conditions and actions could be implemented as 
methods in Java. It is more useful if conditions and actions are executed as class methods 
than as stand-alone functions. This is because the methods are bound to the objects 
invoking the methods and makes it more object-oriented. 

4.7.2 Temporal Events 
As was mentioned earlier, it is possible to access the system timer from C++ programs. It 
is possible to set an alarm for some amount of time and be notified later when the alarm 
rings. The setitimer system call is used to set the alarm. The application then catches the 
SIGALRM signal generated by the system timer at the end of the alarm time. The 
corresponding temporal event node is notified when the application catches the 
SIGALRM signal. It is not possible to do it the same way from Java applications since 
Java does not support system calls to be made to the underlying operating system. It is 
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also not possible to catch signals generated by the operating system from a Java 
application. 

An alternative to detect temporal events is to use Java Native Interface (JNI) to call C 
functions from Java and calling back to Java from C. The C function can be used to set 
the timer and catch the timer interrupt from the operating system. A Java method can be 
called when the function catches the timer interrupt. However, there are two 
disadvantages to this approach. First, calling C functions from Java and calling back Java 
from C through JNI are both expensive operations. If this is done frequently within the 
application, it will severely affect the performance of the application. Second, using 
system calls in C would make the application platform dependent. This is because 
different operating systems have different system call interfaces. 

Therefore a different approach has to be taken to implement temporal events. A 
combination of Java thread and the 'sleep' method call is used for this purpose. A Timer 
thread is implemented that simulates a timer to detect both absolute and relative temporal 
events. The way this is implemented is described in the next section on implementation. 

4.7.3 Vector and Hash table Data Types in Java 
Java provides the Vector and Hash table data types for storing a collection of elements. A 
Vector is a linear list that can store heterogeneous types of elements and also provides an 
indexed access to its elements. It is like a growable array of objects. A Vector is more 
efficient than a linked list since the elements in a Vector can be accessed through an 
index whereas the elements in a linked list can only be accessed serially. It is particularly 
more efficient if there are more additions to the Vector than deletions. In the 
implementation, Vectors are used for storing the list of event subscribers and the list of 
rules at every event node. They are also used for storing the list of parameter lists at a 
composite event node. This is because these lists mostly involve additions and none or 
very few deletions. 

The Hash table data type also stores a collection of elements. It is an associative array 
that stores a key-value pair. Both the key and the value could be any type of Java objects. 
A value can be stored against a key and retrieved later using the same key. It gives a 
faster look-up speed when compared to searching for a particular value in a linked list. It 
should be noted that it is not exactly equivalent to the general hash table since unlike a 
general hash table, it is not possible to store more than one value against the same key in 
a Java Hash table. In this implementation, Hash tables are used to store the mapping of 
event names and event nodes, event signatures and event nodes and rule names and rule 
nodes. This is because the references to the event nodes and rule nodes do not change and 
also because the references can be uniquely associated with a key such as the event name, 
event signature or the name of a rule. 

5.  IMPLEMENTATION 

This section describes the implementation details of the event detector. First, primitive 
and composite event detection is described. Rule execution based on priorities and 

22 



coupling modes is also described. This section also describes how the event detector runs 
in a separate thread from the application. 

5.1.    Primitive Event Detection 
This section describes how primitive events are detected in a Java application. As part of 
the primitive event definition, the application specifies a name for the primitive event, the 
fully qualified name of the class in which the method associated with the primitive event 
is defined, the event modifier and the complete signature of the method. The API used for 
defining primitive events is shown below: 

createPrimitiveEvent("setPriceBegin","Stock",EventModifier.BEGIN," 

void setPrice(float)") 

Primitive events that belong to a class and the rules on these primitive events are either 
defined in a static block within the class or can be defined anywhere in the application. 
The Java Virtual Machine (JVM) loads a class whenever it comes across the name of the 
class in the application. At class load time, the statements enclosed within the static block 
are executed. Therefore, the definitions of primitive events and rules that are specified 
within a static block are executed when that class is loaded. When a primitive event is 
defined using the above API, an event handle corresponding to that event is returned. The 
event handle is used to store the parameters of the event as well as to signal the method 
invocation to the event detector. How this is done is described later in this section. 

The Java application initially invokes an initializeAgent method that returns an instance 
of the 'ECAAgent' class. The application can either get a default instance or a named one 
by passing an optional name to the initializeAgent API. This name can be used to get the 
associated ECAAgent instance anywhere in the application by using the 
getAgentlnstance API. The above API is invoked on an instance of the 'ECAAgent' 
class. The ECAAgent instance stores the names of all events and their associated event 
handles in a Hash table. The primitive event definition creates a primitive event node that 
forms a leaf node in the event graph described in the previous section. The event detector 
maintains two more hashtables - one hash table stores a mapping between event names 
and event nodes (eventNamesEventNodes) and the other hash table stores a mapping 
between method signatures (only for primitive events) and the event nodes (event 
signature event nodes).Inside the method that is defined as a primitive event, the user 
adds calls to the event detector API in order to signal the invocation of a method (a 
primitive event occurrence) to the event detector. First, the event handles corresponding 
to the primitive event are obtained using the name of the primitive event. After obtaining 
the event handles, the arguments of the event method are inserted into the event handles 
through the 'insert' API. The parameters are inserted by specifying the event handle, a 
symbolic name of the parameter and the parameter itself. Finally, the event handles and 
the instance which invokes the method (this) are passed through the 'raiseBeginEvent' 
API. For end events, the 'raiseEndEvent' API is used and is placed at the end of the 
method. 
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Figure 5 The Event Detector Thread 

As mentioned earlier, the event handle stores the signature of the method. This signature 
is used to get the corresponding event node from the eventSignaturesEventNodes hash 
table mentioned above. Then, the node is notified about the occurrence of the primitive 
event and the parameter list stored in the event handle is passed to the node as an 
argument to the 'notifyEvent' call. Thus, the invocation of an application method (begin 
or end) is detected as a primitive event by the event detector (Figure 5). It should be 
noted that there is a timestamp associated with all primitive events. Currently, the 
timestamp consists of an integer counter that is incremented at every primitive event 
occurrence. After the primitive event is detected, its parameters are propagated to all the 
composite events that have subscribed to it. 
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Figure 6 An Event Detector Graph 

Finally, the list of rule subscribers is traversed and the rules are executed according to 
their priority and coupling mode. Rule execution based upon rule priority and coupling 
mode is described in a later section. The next section describes how composite events are 
detected. 
As described in Section 4, a primitive event node contains an instance-rule list that 
contains a list of instances and a set of rules associated with each instance. When a 
primitive event occurs and the corresponding class level node is notified, the instance rule 
list is traversed and checked to see if the event instance (the instance which invoked the 
event method) is present in the list of instances. If the event instance is present, the list of 
rules associated with the instance is traversed, and the rules are executed. 
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5.2.     Composite Event Detection 

A composite event is composed of two or more primitive events using one or more of the 
snoop operators. Snoop operators are either binary or ternary. For example, the 'AND' 
operator is a binary operator with two constituent events whereas the 'NOT' operator is a 
ternary operator with three constituent events. A composite event is associated with a list 
of parameter lists, i.e., the parameter lists of all the constituent primitive events. Every 
composite event has an initiator event that initiates the detection, and a terminator event 
that completes the detection of the event. The composite event is detected when the 
terminator event is detected. It should be noted that a composite event is detected only 
when either there are rules defined on that event or rules defined on another composite 
event for which this event is a constituent event. The composite event is to be detected 
and propagated in the later case because it could lead to the detection of the dependent 
composite event over which a rule is defined. For this purpose, there are four integers 
stored at each node. Each integer denotes the sum of the rules defined on that event and 
all the dependent events in a particular context. A composite event is detected and 
propagated in a context only when the corresponding integer is non-zero. Whenever a 
rule is defined or enabled on an event in a particular context, the corresponding integer in 
that node is incremented. Also, the event graph (Figure 6) is recursively traversed from 
that event node until the leaf nodes are reached and the corresponding integer is 
incremented in all the nodes encountered. When a rule is deleted or disabled, the same 
procedure is followed and the corresponding integer is decremented. The process of 
composite event detection in all four parameter contexts is described next. 

As mentioned earlier, a composite event can be detected in four different contexts. To 
illustrate this, consider the definition of the following composite event using the AND 
operator: 

event andEvent = AND(el, e2) 

Consider the event occurrences shown on the timeline below. 

ti      t2      t3 

time    I        i        i ► 

ei1    ei
2      e2' 

The AND event is detected when e2 occurs, n is IKH ciear whether e2
! should be paired 

with ei or ei . In order to avoid this disambiguate, parameter contexts were introduced. 
For this example, ei and e2' are paired in the recent context whereas ei1 and e2* are 
paired in the chronicle context. In the continuous context, two events are detected at the 
same time - ei e2 and ei e2

l. In the cumulative context, a single event is detected with 
constituent events ei eiV. Thus different events are paired in different contexts at the 
same time. To accomplish this, the following procedure is followed for detecting 
composite events. 

In every composite event node, there is an event table stored for each constituent event. 
Each entry in the event table stores an event occurrence and a set of four bits containing 
information about the four different contexts associated with the event. The event 
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occurrence could be either a single event (a single parameter list) or a set of events (a list 
of parameter lists). At the first level of composite event nodes in the event graph, the 
event occurrence is a single event. At composite event nodes higher up in the graph, the 
event occurrence is a set of events and the size of the set increases as we move higher in 
the graph. The four bits associated with an event occurrence denote the four contexts. The 
first bit denotes the Recent context, the second bit denotes the Chronicle context, the third 
bit Continuous context and the fourth bit denotes the Cumulative context. If a particular 
bit is set, it means that this event is yet to participate in the detection of the composite 
event in the corresponding context. When an event occurrence is used to detect the 
composite event in a particular context, the corresponding context bit is reset according to 
the semantics of the operator. 

Once an event is detected, its parameters are propagated to all its subscriber events. It 
should also be noted that an event is detected in a particular context only when there are 
rules defined on a composite event in that context. In other words, a context bit for an 
event occurrence is set only when there is at least one rule defined in that context This 
minimizes the propagation of events in the event graph. 

5.3.    Parameter Lists 

M   _ 

parameter 
list 

3 } list of parameter 
lists 

type value 

parameter node 
variable name 

Figure 7 The data structure used for storing the parameter 

As already mentioned, the parameters of a primitive event are the arguments to the 
method associated with that event. The name of a parameter is the name of the argument. 
If the parameters are inserted into the parameter list in the same order as they are passed 
to the method, the position of the parameter would be its position in the method 
definition. When parameters are inserted into a parameter list, they can be retrieved using 
either the name of the parameter or the position of the parameter in the parameter list. If 
the parameters are to be retrieved using their name, both the parameter and its name are 
to be stored whereas if they are retrieved by their position only, only the parameter needs 
to be stored. To allow for both kinds of retrievals, we store both the parameter and its 
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name in the parameter list. Since there should be an association between the parameter 
and its name, a hash table is used for the parameter list. This hash table is a mapping 
between parameter names and parameter nodes. As shown in the Figure 7, a parameter 
node stores the type and value of the parameter. As mentioned in Section 4, the value of 
the parameter is stored as an Object type. The type information is needed in order to cast 
the Object to the appropriate type at run time. 

As already mentioned, a composite event is associated with a list of parameter lists. It 
should be possible to search through this list for a particular parameter list either by 
position or content. For this purpose, a vector is used to store the list of parameter lists. In 
a vector, the individual parameter lists can be accessed both by position as well as 
sequentially. A set of API is provided on the list of parameter lists to find a particular 
parameter list. 

5.4.    Detecting Temporal Events 

For detecting temporal events, there should be a mechanism for keeping track of clock 
time from within the program. The timer maintained by the operating system could be 
used for this purpose. The important aspect of temporal event detection is that the time 
notifications from the operating system should be asynchronous to the execution of the 
program. The program should be notified at the moment the designated time expires, 
irrespective of the execution point in the program. 

Some programming languages like C provide an interface to the operating system timer. 
This interface lets application developers to set an alarm for a specific period of time and 
then catch the signal generated by the timer at the end of the expiration of alarm time. For 
absolute temporal events, the alarm is set at the time of the definition of the event For 
relative temporal events, the timer is set when the precedent event occurs. For achieving 
this capability, the application program should be able to catch signals generated by the 
operating system. As part of the OS independence, the Java programming language does 
not provide a mechanism to access the system timer and catch the signals generated by 
the operating system. Therefore it is not possible to set the system timer and receive 
notifications from it. But, Java provides a 'sleep' method call that causes the calling 
thread to sleep for a specified amount of time. The sleep method call uses the timer of the 
underlying operating system to count the time. 

There is a subtle difference between the sleep method calls in C and Java. In C, the 
suspension time specified by the call may be less than that requested because any caught 
signal will terminate the sleep following execution ofthat signal's catching routine. If the 
calling thread has set up an alarm signal before calling sleep, the thread sleeps only until 
the alarm signal occurs. This may disrupt the semantics of the application if the semantics 
is dependent on the actual time spent by the thread in the sleep method. In the present 
case, it would lead to wrong semantics since we want the thread to sleep (i.e., suspend) 
for the fixed amount of time and then trigger the corresponding temporal event. If the 
thread does not sleep for the desired amount of time, it will lead to incorrect notification 
of the corresponding temporal event. Moreover, if two threads are sleeping within the 
same process, the end of the sleep in one thread would terminate the sleep in the other 
thread too. 
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In Java, no OS signals are accessible from the application program. Hence there is no 
possibility of another signal causing a sleep method to return prematurely. Also, unlike in 
C, the termination of a sleep call from one thread does not cause another sleeping thread 
to terminate its sleep. However, it is possible to interrupt a sleeping thread from another 
thread, by calling the interrupt method on the sleeping thread. This would also be 
beneficial to us as it would be necessary to interrupt a sleeping thread as will be 
explained later in this section where the implementation of the timer is described. Thus, 
when a Java thread calls sleep, it is either terminated at the end of the sleep period or 
when another thread interrupts it. Owing to the above reasons, the sleep method call is 
used in a Java thread to implement timer notifications in our system. A Timer thread is 
implemented that simulates a timer to detect both absolute and relative temporal events. 
The next paragraph describes the way the Timer thread simulates the timer. 

The execution of the Timer thread is relatively simple. It runs in an infinite loop sleeping 
for a certain period of time and then sending a notification to the corresponding temporal 
event node at the end of the sleep time. When the application defines a temporal event 
(absolute or relative such as PLUS, PERIODIC and PERIODIC-STAR events), a 
temporal event node is created containing the time expression specified in the temporal 
event. For absolute temporal events, the timer thread sleeps for the difference amount of 
the time specified in the absolute temporal event and the current system time. For relative 
temporal events, the relative time expression is first converted to absolute time and the 
timer thread is put to sleep for a period that corresponds to the difference between this 
absolute time and the current system time. 

Since there can be more than one temporal event specified in the application and the 
same clock time may raise multiple events, there should be a way to manage all the 
temporal events appropriately. While the timer thread is sleeping for a certain period of 
time, there could be another definition of a temporal event that occurs before the current 
sleep time. For this purpose, the timer thread should be able to be interrupted while it is 
sleeping, and then put to sleep again for a different amount of time. The Temporal Event 
Handler component of the event detector has to take care of all these nuances by 
managing the temporal events appropriately. The temporal event handler is described in 
the next section. 

5.5.     Temporal Event Handler 
The temporal event handler consists of three classes - Timeltem, TimeQueue and Timer. 
The Timeltem class stores a time expression and an event_id that refers to the precedent 
event for relative time events. An absolute time expression has the format- 
hh:mm:ss/MM/dd/yyyy, where h denotes the hour, m denotes the minute, s denotes the 
second, M denotes the month, d denotes the day and y denotes the year when the event 
should occur. This implementation also supports the specification of wild cards in one or 
more positions of the absolute time expression given above. The two wild cards that are 
supported are '?' and '*'. The wild card '?' can replace any one position in one or more 
fields of the time expression. For example, the time string 12:70:00/08/15/1999 expresses 
the repetitive time event which occurs at 12:00:00,12:10:00,12:20:00 ... 12:50:00 on 
08/15/1999. The wild card '*' can replace all the positions in a particular field of the time 
string. For example, the time string 12:*:00/08/15/1999 expresses the repetitive time 
event which occurs at 12:00:00,12:01:00,12:02:00 ... 12:59:00 on 08/15/1999. The 
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implementation of repetitive temporal events follows the algorithm specified in [22]. A 
relative time expression appears in the definition of one of the temporal events - PLUS, 
PERIODIC or PERIODICSTAR. It has the format - hh Tirs* mm 'min' ss 'sec' where the 
letters stand for the same things as above. The relative time is converted to an absolute 
time by adding the relative time to the system time when the Timeltem is instantiated. 

A TimeQueue is a linked list of Timeltems maintained in the ascending order of their 
time values. The temporal event handler consists of two TimeQueues namely, allltems 
and presentltems. It should be noted that triggering of the timer could correspond to more 
than one event that needs to be triggered at the same time. The list of presentltems 
consists of all the temporal time items that are to be notified at the same time. The timer 
thread sleeps for the amount of time specified in the time items of the presentltems list. 
Initially when the lists (allltems and presentltems) are empty, the incoming time item is 
put in the presentltems list and the timer thread is put to sleep accordingly. When a new 
time item comes while the timer thread is sleeping, the time value in the new time item 
may be lesser, greater or equal to the time value for which the timer thread is currently 
sleeping. The algorithm shown below illustrates the steps taken for managing the time 
queues when a new time item arrives. 

Let presTime be the time for which the timer is currently set. 
Let currTime be the new time value to be added. 
Let tqi be a TimeQueueltem. 

If currTime = presTime 
add currTime to ih&presltems queue 

else if currTime > presTime 
add currTime to the allltems queue in the appropriate position 

else if currTime < presTime 
add currTime to the allltems queue 
Move all the tqi's in the allltems queue that have the 
same expiration time, to a temporary queue 
Add all the tqi's in üiepresltems queue to the allltems queue 
Move all the tqi's in the temporary queue to ih&presltems queue 
Reset the timer 

In case the time value of the new time item is equal to the time value of the 
current time items, the new time item is added to the list of presentltems. If the new time 
value is lesser than the current time value, all the time items in the presentltems list are 
moved to the list of allltems and the new time value is placed in the presentltems list. The 
timer thread is interrupted and put to sleep for the new time value. On the other hand, if 
the new time value is greater than the current time value, it is placed in the allltems list in 
the appropriate position. It is to be remembered that the allltems list is maintained in the 
ascending order of time values. Whenever the time items in the presentltems list are 
processed, all the time items in the allltems list that have the same time value are moved 
to the list of presentltems and the timer thread is put to sleep according to the new time. 
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The Timer class manages the two lists mentioned above - allltems and presentltems. It 
extends the Java Thread class and runs in a separate thread from the application. When a 
new time item is added, it is put into the appropriate list and the necessary modifications 
are done to the two lists. This class is also responsible for calling the sleep method call 
with appropriate time value, interrupting the sleep if necessary and resuming the sleep 
again. The 'start' method for this thread is placed within a static block in the 'Timer' 
class. Therefore, the thread is started when the Timer class is loaded. The Timer class 
would be loaded when a temporal event attempts to set the timer for a time period. The 
timer thread runs in an infinite loop, checking if there are any time items present in the 
presentltems list that are to be notified. 

5.6.    Event Detector as a Thread 

In the earlier implementation of the event detector in C++, the event detector runs in the 
same thread as the application. In other words, all the calls to the event detector were 
processed synchronously in the application. This implementation separates the event 
detector and the application into two different threads. In other words, the calls from the 
application to the event detector are processed in a separate thread from the application. 

raiseBeainEventf» 

crocess 

notifVBuffer 

Event Detector 
Thread 

notifVObiect 

Rule Threads 

Figure 8 Processing Event Notifications from Event Detector Thread 

This was primarily done to have a clean separation between the application and the event 
detector. We believe this will help when extending the event detector to detect events 
across address spaces. One more advantage is that it allows the detection of events to be 
processed either synchronously with the application or in parallel with the application. 
The architecture of the event detector as a thread is shown in Figure 8. 

Whenever the application makes a call to the raiseBeginEvent API, a reference to that 
method is constructed and placed in an object. The reference to the method is obtained by 
using the Java reflections. 
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The actual parameters used to call the method are also stored in that object. This object is 
then placed in a buffer called the 'notifyBuffer' that can contain more than one object at a 
time. Once this object is placed in the notifyBuffer, the application thread can continue 
and place additional objects in the notifyBuffer. The event detector runs as a thread in an 
infinite loop that continuously keeps getting objects from the notifyBuffer and executing 
the method calls stored in those objects with the parameters stored in that object. 

It should be noted that only the raiseBegiriEvent calls are put into the notifyBuffer and 
processed by the event detector thread. The event detector thread does not process the 
calls to the API methods for creating events and rules. This is because the API for 
creating events returns an event handle. Returning the event handle would not be possible 
if the event detector thread processes these calls, since threads cannot return a value. 
Therefore, the calls for creating events and rules are processed by the application thread 
itself and the event detector thread processes only the raiseBeginEvent calls. 

Since the application thread and the event detector thread access the notifyBuffer 
simultaneously, the access to the notifyBuffer through its put and get methods has to be 
synchronized. In the implementation, these two methods are defined as synchronized 
methods so that only a single thread can execute one of these methods at a time. It should 
be noted that the application thread and the event detector thread use the same 
notifyBuffer object. While the application thread keeps putting objects into this buffer, 
the event detector thread keeps getting objects from the same buffer. The algorithms for 
the put and get methods are shown below. 

PUT method: 
Add the notifyObject to notifyBuffer 

GET method: 
If notifyBuffer is empty 

wait 
else return the notifyObject 

RUN method of the Event Detector Thread: 
while (true) { 

Get the notifyObject from notifyBuffer 
Process the notifyObject 
if DetectionMode of event == synchronous 

wakeup notifyBuffer 
} 

Application Thread: 
Put the notifyObject into the notifyBuffer 
if DetectionMode = synchronous 

wait 
else return 
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The detection mode of the event is specified at the time of primitive event definition. The 
detection mode can be either synchronous or parallel. It should be noted that the detection 
mode is specified only for primitive events and not for composite events. This is because 
composite events are detected according to the detection mode of its constituent primitive 
events. If the event is to be detected synchronously, the application thread is made to wait 
until the notifyEvent call returns. On the other hand, if the event is to be detected in 
parallel, the application thread does not wait until the notifyEvent call returns, but 
continues. The information regarding the mode of event detection (synchronous or 
parallel) is stored in the corresponding primitive event node. 

Figure 9 Rule-list data structure 
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5.7.    Rule Scheduling 

As already mentioned, when an event occurs in the application, the rules that subscribe to 
that event are triggered. A simplistic approach would be to let all the rules that have been 
triggered by an event to run one after another. This approach does not use parallelism or 
maximize throughput. It would be beneficial to let the rules execute in parallel, thereby 
reducing the overall execution time of the rules. Since each rule also has a priority 
associated with it, the rules are to be executed based on their relative priorities. Thus, 
rules with the highest priority are to be executed first and rules of lower priority are to be 
executed after the completion of the higher priority rules. As mentioned in Section 2, a 
rule is also associated with a coupling mode. Rules are to be executed based on their 
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coupling modes. Rules created with immediate coupling mode are to be executed at the 
time the event occurs whereas rules created with deferred coupling mode are executed at 
a later time as described in Section 2. In order to execute rules according to the above 
criteria, a rule scheduler is needed that schedules the rules based on their priority and 
coupling modes. The design issues of the rule scheduler can be found in [23]. The 
execution of the rule scheduler and the associated data structures are explained below. 

When a set of rules is triggered by an event, a thread is created for each rule that contains 
the rule, its priority, coupling mode, a reference to the parent thread (the thread which 
triggered the rule) and an operating mode. Once a rule thread is created, it can be in one 
of the four operating modes Ready, Wait, Exe and Finished until it finishes execution. 
When the thread is created, it has a 'Ready' operating mode. The thread is inserted into a 
data structure called the processRuleList that is shown in o 

A processRuleList contains three rule queues namely, the immediateRuleQueue, 
deferredQueueOne and deferredQueueTwo. Each of these rule queues is a linked list of 
rule threads. The placement of a rule thread in the processRuleList depends on its 
coupling mode, parent thread and priority. Within a rule queue, the rules are inserted in 
the decreasing order of priority. The rules with immediate coupling mode that are 
triggered from the application thread are placed in the immediateRuleQueue and the rules 
with deferred coupling mode are placed in deferredQueueOne. It should be noted that the 
two deferred rule queues are interchanged when all rules in one deferred queue complete 
execution. When an immediate or deferred rule triggers further rules, the rules are 
inserted into the processRuleList as shown in the Figure 9. 

The top-level rules that are triggered from the application are Rl, R2 and R3. It should be 
noted that the parents these top-level rules are shown as 1, denoting the application 
thread. For rules that are triggered from the top-level rules, the name of the parent rule is 
shown as the parent. In the actual implementation, the reference to the parent thread is 
stored in each rule thread. The priorities and coupling modes are also indicated for each 
rule. Rl and R2 are placed in the immediateRuleQueue since they are defined with 
immediate coupling mode and they are stored in the decreasing order to their priority. R3 
is placed in deferredQueueOne since it has a deferred coupling mode. The policy for 
inserting the child rules triggered from a rule is explained later in the section. 

The rule scheduler is a thread running in an infinite loop that schedules i.e., starts the rule 
threads according to their priority and coupling modes. When the processRuleList is 
empty, the thread yields itself and waits. After the rule threads are created and inserted 
into the processRuleList in the notifyEvent method, the scheduler thread is woken up. 
The notifyEvent method then waits until all the rules triggered in immediate coupling 
mode finish execution. As mentioned in Section 2, deferred rules are executed when the 
event processDeffRules is raised by the application. 

The scheduler checks the deferredFlag to see if the rules in immediate queue are to be 
scheduled or the rales in deferred queue. If the deferredFlag is false, it schedules rules in 
the immediateRuleQueue and if it is true, rules in deferredQueueOne are scheduled. After 
deciding which rules to schedule, the scheduler gets the rule threads with the highest 
priority from the rule queue and starts all of them simultaneously. At this time, the 
operating mode of the rule is changed to 'Exe'. It should be noted that rules of next 
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priority are to be executed only after all the higher priority rules complete execution. 
Thus, the scheduler waits for all the scheduled threads to complete (using a thread join) 
before starting the rule threads of a lower priority. 

If the rule threads raise events that in turn trigger rules, the operating mode of the parent 
rule changes to 'Wait' and the child rules are inserted into the processRuleList. If a rule 
in immediate mode triggers immediate rules, the child rules are placed next to the parent 
rule in the immediateRuleQueue. Further, the child rules are ordered according to their 
decreasing priority. On the other hand, if the immediate rule triggers rules in deferred 
coupling mode, the rule is placed in deferredQueueOne according to its priority. The 
immediate rules triggered by a deferred rule are placed in the same queue as the parent 
and next to the parent. On the other hand, deferred rules triggered by a deferred rule are 
placed in the other deferred queue. As mentioned above, deferredQueueOne becomes 
deferredQueueTwo when all the rules in deferredQueueOne finish execution and vice- 
versa. After inserting the child rules in the processRuleList, the parent rule thread waits 
until all its child rules with immediate coupling mode, complete. 

As already mentioned, the notifyEvent method waits for all the immediate rules to 
complete. It does this by performing a join of all the immediate rule threads. When a 
thread completes execution, it is removed from the processRuleList. When all the 
immediate rules finish execution, the scheduler thread waits, to be woken up by the 
notification of another event that triggers rules. When the scheduler wakes up again, it 
repeats the above process for the rules triggered by the new event. 

6.   CONCLUSIONS AND FUTURE WORK 

This report presents an approach to incorporating active capability in a Java environment 
and its implementation. An event detector was implemented that detects events in Java 
applications and executes rules defined on them. It discusses some of the limitations of 
the C++ environment that influenced the design of the original version of the event 
detector and how we have overcome some of the limitations of the original 
implementation. It also discusses the alternatives available in the Java environment and 
the reasons behind the choice of a particular alternative. 

Primitive event detection as well as composite event detection in various parameter 
contexts has been implemented. Unlike the earlier implementation, the current 
implementation uses only a single parameter list to detect events in all the four parameter 
contexts. This is achieved by manipulating a set of four bits (one bit for each context) 
associated with each event occurrence. The composite event operators that were 
implemented are AND, OR, SEQUENCE, NOT, APERIODIC (A), APERIODIC-STAR 
(A*), PLUS, PERIODIC (P) and PERIODIC-STAR (P*). A temporal event handler was 
also implemented for the relative temporal event operators PLUS, P and P*. The 
temporal event handler also supports absolute temporal events as well as the specification 
of wild cards in absolute time expressions. The temporal event handler in C++ was 
platform-dependent since it used system calls to catch an interrupt from the OS timer. On 
the other hand, the temporal event handler in Java is platform-independent, as it does not 
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use system calls. The sleep method and the thread operations in Java (thread interrupt, 
thread wait and thread notify) are used to implement the timer. 

In the earlier implementation of the event detector in C++, the event detector runs in the 
same thread as the application thread. In other words, all the calls to the event detector 
were processed synchronously in the application. This implementation separates the 
event detector and the application into two different threads i.e., the calls from the 
application to the event detector are processed in a separate thread from the application. 
This was primarily done to have a clean separation between the application and the event 
detector. We believe this will help when extending the event detector to detect events 
across address spaces. This also supports the parallel detection mode i.e., the detection of 
events can be processed either synchronously with the application or in parallel with the 
application. This implementation also includes a rule scheduler that schedules the rules to 
execute in separate threads according to their priority and coupling modes. 

In the C++ version, there was only a single event graph for all the events and rules in an 
application whereas the current implementation allows multiple event graphs, each 
associated with a set of events and rules. This allows grouping of events and rules within 
the same application. By grouping rules, the application can disable or enable a group of 
rules and also use different groups of rules on the same events in different parts of the 
application. This will be useful for applications that require different set of rules for the 
same events under different circumstances. 

6.1.    Future Work 
The future work involves adding the capability of defining events and rules dynamically 
during application run-time without having to restart the application. Planning to use the 
dynamic class loading capability available in Java for achieving this. Java also has the 
provision for executing a block of code at class-load time. This block of code is executed 
only once during a single invocation of the application since a class is loaded only once 
into the Java virtual machine during the execution of the application. This feature is 
useful for creating events and rules dynamically. A graphical user interface for defining 
events and rules dynamically is also being planned. 

Currently, the application developer has to explicitly put the raiseBeginEvent and 
raiseEndEvent calls inside the methods that have been defined as primitive events. 
Instead, a preprocessor can be used to preprocess the user classes, which puts these calls 
inside the methods. This is to be done before the classes are compiled along with the 
event detector classes. A preprocessor that parses Java classes and inserts the required 
calls to the event detector at appropriate places is being planned for this purpose. 

The current implementation detects events only in a single application. In the future, it 
can be extended to detect events across multiple applications. In other words, events can 
be detected in a distributed system. With the use of CORBA, it can be extended to 
heterogeneous environments too. With the addition of some more capabilities, the event 
detector can also be treated as an agent that provides the service of event detection and 
rule execution. Other systems communicating with this agent can utilize some or all of 
the services provided by it. 
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Also, the events occurring in an application can be logged and primitive and composite 
event detection can be done as a post-analysis. Thus, the current implementation can be 
extended along multiple dimensions to enhance its functionality such that it can be 
utilized in the development of a wide variety of software systems that require active 
capability. 
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